728x90
문제
Table: Department
+-------------+---------+
| Column Name | Type |
+-------------+---------+
| id | int |
| revenue | int |
| month | varchar |
+-------------+---------+
In SQL,(id, month) is the primary key of this table.
The table has information about the revenue of each department per month.
The month has values in ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"].
Reformat the table such that there is a department id column and a revenue column for each month.
Return the result table in any order.
https://leetcode.com/problems/reformat-department-table/description/?lang=pythondata
예시
Input:
Department table:
+------+---------+-------+
| id | revenue | month |
+------+---------+-------+
| 1 | 8000 | Jan |
| 2 | 9000 | Jan |
| 3 | 10000 | Feb |
| 1 | 7000 | Feb |
| 1 | 6000 | Mar |
+------+---------+-------+
Output:
+------+-------------+-------------+-------------+-----+-------------+
| id | Jan_Revenue | Feb_Revenue | Mar_Revenue | ... | Dec_Revenue |
+------+-------------+-------------+-------------+-----+-------------+
| 1 | 8000 | 7000 | 6000 | ... | null |
| 2 | 9000 | null | null | ... | null |
| 3 | null | 10000 | null | ... | null |
+------+-------------+-------------+-------------+-----+-------------+
Explanation: The revenue from Apr to Dec is null.
Note that the result table has 13 columns (1 for the department id + 12 for the months).
문제 풀이
import pandas as pd
def reformat_table(department: pd.DataFrame) -> pd.DataFrame:
prefixes = ["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]
# 피봇 테이블 생성
pivoted = department.pivot(index='id', columns='month', values='revenue')
# 열 reindex
result = pivoted.reindex(columns=prefixes)
# 열 이름 변경
result.rename(columns=lambda prefix: prefix + '_Revenue', inplace=True)
# 인덱스를 열로 변환 (id열)
result.reset_index(inplace=True)
return result
파이썬을 독학하시는 분들에게 도움이 되길 바라며,
혹 더 좋은 방법이 있거나 오류가 있다면 편하게 말씀 부탁드립니다.
728x90