문제
Table: Sales
+-------------+-------+
| Column Name | Type |
+-------------+-------+
| sale_id | int |
| product_id | int |
| year | int |
| quantity | int |
| price | int |
+-------------+-------+
(sale_id, year) is the primary key (combination of columns with unique values) of this table.
product_id is a foreign key (reference column) to Product table.
Each row of this table shows a sale on the product product_id in a certain year.
Note that the price is per unit.
Table: Product
+--------------+---------+
| Column Name | Type |
+--------------+---------+
| product_id | int |
| product_name | varchar |
+--------------+---------+
product_id is the primary key (column with unique values) of this table.
Each row of this table indicates the product name of each product.
Write a solution to report the product_name, year, and price for each sale_id in the Sales table.
Return the resulting table in any order.
https://leetcode.com/problems/product-sales-analysis-i/description/?lang=pythondata
예시
Input:
Sales table:
+---------+------------+------+----------+-------+
| sale_id | product_id | year | quantity | price |
+---------+------------+------+----------+-------+
| 1 | 100 | 2008 | 10 | 5000 |
| 2 | 100 | 2009 | 12 | 5000 |
| 7 | 200 | 2011 | 15 | 9000 |
+---------+------------+------+----------+-------+
Product table:
+------------+--------------+
| product_id | product_name |
+------------+--------------+
| 100 | Nokia |
| 200 | Apple |
| 300 | Samsung |
+------------+--------------+
Output:
+--------------+-------+-------+
| product_name | year | price |
+--------------+-------+-------+
| Nokia | 2008 | 5000 |
| Nokia | 2009 | 5000 |
| Apple | 2011 | 9000 |
+--------------+-------+-------+
Explanation:
From sale_id = 1, we can conclude that Nokia was sold for 5000 in the year 2008.
From sale_id = 2, we can conclude that Nokia was sold for 5000 in the year 2009.
From sale_id = 7, we can conclude that Apple was sold for 9000 in the year 2011.
문제 풀이
import pandas as pd
def sales_analysis(sales: pd.DataFrame, product: pd.DataFrame) -> pd.DataFrame:
merged = pd.merge(sales, product, on = 'product_id', how= 'left')
result = merged.loc[:,['product_name', 'year', 'price']]
return result
import pandas as pd
def sales_analysis(sales: pd.DataFrame, product: pd.DataFrame) -> pd.DataFrame:
return pd.merge(sales, product, on = 'product_id', how= 'left')[['product_name', 'year', 'price']]
파이썬을 독학하시는 분들에게 도움이 되길 바라며,
혹 더 좋은 방법이 있거나 오류가 있다면 편하게 말씀 부탁드립니다.